• Historia de la Computadora
    La primera máquina de calcular mecánica, un precursor del ordenador digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar. El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.
  • La Máquina Analítica
    También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro.
  • Primeros Ordenadores
  • Los ordenadores analógicos:comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.
  • Ordenadores electrónicos
    Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y con independencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU). Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico digital electrónico (ENIAC) en 1945. El ENIAC, que según mostró la evidencia se basaba en gran medida en el 'ordenador' Atanasoff-Berry (ABC, acrónimo de Electronic Numerical Integrator and Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde. El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidense John von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba al ordenador de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse al ordenador. A finales de la década de 1950 el uso del transistor en los ordenadores marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.
  • Circuitos integrados
    A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.
  • Historia de la Computación
  • COMPUTADORA
    Máquina capaz de efectuar una secuencia de operaciones mediante un programa, de tal manera, que se realice un procesamiento sobre un conjunto de datos de entrada, obteniéndose otro conjunto de datos de salida.
  • TIPOS DE COMPUTADORAS
    Se clasifican de acuerdo al principio de operación de Analógicas y Digitales. * COMPUTADORA ANALÓGICA
    1. Aprovechando el hecho de que diferentes fenómenos físicos se describen por relaciones matemáticas similares (v.g. Exponenciales, Logarítmicas, etc.) pueden entregar la solución muy rápidamente. Pero tienen el inconveniente que al cambiar el problema a resolver, hay que realambrar la circuitería (cambiar el Hardware). * COMPUTADORA DIGITAL
    1. Están basadas en dispositivos biestables, i.e., que sólo pueden tomar uno de dos valores posibles: '1' ó '0'. Tienen como ventaja, el poder ejecutar diferentes programas para diferentes problemas, sin tener que la necesidad de modificar físicamente la máquina.
  • HISTORIA DE LA COMPUTACIÓN
    Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre varillas, sus posiciones representan valores almacenados, y es mediante dichas posiciones que este representa y almacena datos. A este dispositivo no se le puede llamar computadora por carecer del elemento fundamental llamado programa. Otro de los inventos mecánicos fue la Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil. La primera computadora fue la máquina analítica creada por Charles Babbage, profesor matemático de la Universidad de Cambridge en el siglo XIX. La idea que tuvo Charles Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. En 1823 el gobierno Británico lo apoyo para crear el proyecto de una máquina de diferencias, un dispositivo mecánico para efectuar sumas repetidas. Mientras tanto Charles Jacquard (francés), fabricante de tejidos, había creado un telar que podía reproducir automáticamente patrones de tejidos leyendo la información codificada en patrones de agujeros perforados en tarjetas de papel rígido. Al enterarse de este método Babbage abandonó la máquina de diferencias y se dedico al proyecto de la máquina analítica que se pudiera programar con tarjetas perforadas para efectuar cualquier cálculo con una precisión de 20 dígitos. La tecnología de la época no bastaba para hacer realidad sus ideas. El mundo no estaba listo, y no lo estaría por cien años más. En 1944 se construyó en la Universidad de Harvard, la Mark I, diseñada por un equipo encabezado por Howard H. Aiken. Esta máquina no está considerada como computadora electrónica debido a que no era de propósito general y su funcionamiento estaba basado en dispositivos electromecánicos llamados relevadores. En 1947 se construyó en la Universidad de Pennsylvania la ENIAC (Electronic Numerical Integrator And Calculator) que fue la primera computadora electrónica, el equipo de diseño lo encabezaron los ingenieros John Mauchly y John Eckert. Esta máquina ocupaba todo un sótano de la Universidad, tenía más de 18 000 tubos de vacío, consumía 200 KW de energía eléctrica y requería todo un sistema de aire acondicionado, pero tenía la capacidad de realizar cinco mil operaciones aritméticas en un segundo. El proyecto, auspiciado por el departamento de Defensa de los Estados Unidos, culminó dos años después, cuando se integró a ese equipo el ingeniero y matemático húngaro John von Neumann (1903 - 1957). Las ideas de von Neumann resultaron tan fundamentales para su desarrollo posterior, que es considerado el padre de las computadoras. La EDVAC (Electronic Discrete Variable Automatic Computer) fue diseñada por este nuevo equipo. Tenía aproximadamente cuatro mil bulbos y usaba un tipo de memoria basado en tubos llenos de mercurio por donde circulaban señales eléctricas sujetas a retardos. La idea fundamental de von Neumann fue: permitir que en la memoria coexistan datos con instrucciones, para que entonces la computadora pueda ser programada en un lenguaje, y no por medio de alambres que eléctricamente interconectaban varias secciones de control, como en la ENIAC. Todo este desarrollo de las computadoras suele divisarse por generaciones y el criterio que se determinó para determinar el cambio de generación no está muy bien definido, pero resulta aparente que deben cumplirse al menos los siguientes requisitos: · La forma en que están construidas.
    · Forma en que el ser humano se comunica con ellas.

    * Primera Generación
    En esta generación había una gran desconocimiento de las capacidades de las computadoras, puesto que se realizó un estudio en esta época que determinó que con veinte computadoras se saturaría el mercado de los Estados Unidos en el campo de procesamiento de datos. Esta generación abarco la década de los cincuenta. Y se conoce como la primera generación. Estas máquinas tenían las siguientes características: · Estas máquinas estaban construidas por medio de tubos de vacío.
    · Eran programadas en lenguaje de máquina.
    En esta generación las máquinas son grandes y costosas (de un costo aproximado de ciento de miles de dólares). En 1951 aparece la UNIVAC (NIVersAl Computer), fue la primera computadora comercial, que disponía de mil palabras de memoria central y podían leer cintas magnéticas, se utilizó para procesar el censo de 1950 en los Estados Unidos. En las dos primeras generaciones, las unidades de entrada utilizaban tarjetas perforadas, retomadas por Herman Hollerith (1860 - 1929), quien además fundó una compañía que con el paso del tiempo se conocería como IBM (International Bussines Machines). Después se desarrolló por IBM la IBM 701 de la cual se entregaron 18 unidades entre 1953 y 1957.

    Posteriormente, la compañía Remington Rand fabricó el modelo 1103, que competía con la 701 en el campo científico, por lo que la IBM desarrollo la 702, la cual presentó problemas en memoria, debido a esto no duró en el mercado. La computadora más exitosa de la primera generación fue la IBM 650, de la cual se produjeron varios cientos. Esta computadora que usaba un esquema de memoria secundaria llamado tambor magnético, que es el antecesor de los discos actuales. Otros modelos de computadora que se pueden situar en los inicios de la segunda generación son: la UNIVAC 80 y 90, las IBM 704 y 709, Burroughs 220 y UNIVAC 1105.

    * Segunda Generación
    Cerca de la década de 1960, las computadoras seguían evolucionando, se reducía su tamaño y crecía su capacidad de procesamiento. También en esta época se empezó a definir la forma de comunicarse con las computadoras, que recibía el nombre de programación de sistemas. Las características de la segunda generación son las siguientes:
    · Están construidas con circuitos de transistores.

    · Se programan en nuevos lenguajes llamados lenguajes de alto nivel.
    En esta generación las computadoras se reducen de tamaño y son de menor costo. Aparecen muchas compañías y las computadoras eran bastante avanzadas para su época como la serie 5000 de Burroughs y la ATLAS de la Universidad de Manchester. Algunas de estas computadoras se programaban con cintas perforadas y otras más por medio de cableado en un tablero. Los programas eran hechos a la medida por un equipo de expertos: analistas, diseñadores, programadores y operadores que se manejaban como una orquesta para resolver los problemas y cálculos solicitados por la administración. El usuario final de la información no tenía contacto directo con las computadoras. Esta situación en un principio se produjo en las primeras computadoras personales, pues se requería saberlas "programar" (alimentarle instrucciones) para obtener resultados; por lo tanto su uso estaba limitado a aquellos audaces pioneros que gustaran de pasar un buen número de horas escribiendo instrucciones, "corriendo" el programa resultante y verificando y corrigiendo los errores o bugs que aparecieran. Además, para no perder el "programa" resultante había que "guardarlo" (almacenarlo) en una grabadora de astte, pues en esa época no había discos flexibles y mucho menos discos duros para las PC; este procedimiento podía tomar de 10 a 45 minutos, según el programa.

    El panorama se modificó totalmente con la aparición de las computadoras personales con mejore circuitos, más memoria, unidades de disco flexible y sobre todo con la aparición de programas de aplicación general en donde el usuario compra el programa y se pone a trabajar. Aparecen los programas procesadores de palabras como el célebre Word Star, la impresionante hoja de cálculo (spreadsheet) Visicalc y otros más que de la noche a la mañana cambian la imagen de la PC. El sortware empieza a tratar de alcanzar el paso del hardware. Pero aquí aparece un nuevo elemento: el usuario. El usuario de las computadoras va cambiando y evolucionando con el tiempo.

    De estar totalmente desconectado a ellas en las máquinas grandes pasa la PC a ser pieza clave en el diseño tanto del hardware como del software. Aparece el concepto de human interface que es la relación entre el usuario y su computadora. Se habla entonces de hardware ergonómico (adaptado a las dimensiones humanas para reducir el cansancio), diseños de pantallas antirreflejos y teclados que descansen la muñeca. Con respecto al software se inicia una verdadera carrera para encontrar la manera en que el usuario pase menos tiempo capacitándose y entrenándose y más tiempo produciendo. Se ponen al alcance programas con menús (listas de opciones) que orientan en todo momento al usuario (con el consiguiente aburrimiento de los usuarios expertos); otros programas ofrecen toda una artillería de teclas de control y teclas de funciones (atajos) para efectuar toda suerte de efectos en el trabajo (con la consiguiente desorientación de los usuarios novatos). Se ofrecen un sinnúmero de cursos prometiendo que en pocas semanas hacen de cualquier persona un experto en los programas comerciales. Pero el problema "constante" es que ninguna solución para el uso de los programas es "constante".

    Cada nuevo programa requiere aprender nuevos controles, nuevos trucos, nuevos menús.

    Se empieza a sentir que la relación usuario-PC no está acorde con los desarrollos del equipo y de la potencia de los programas. Hace falta una relación amistosa entre el usuario y la PC. Las computadoras de esta generación fueron: la Philco 212 (esta compañía se retiró del mercado en 1964) y la UNIVAC M460, la Control Data Corporation modelo 1604, seguida por la serie 3000, la IBM mejoró la 709 y sacó al mercado la 7090, la National Cash Register empezó a producir máquinas para proceso de datos de tipo comercial, introdujo el modelo NCR 315. La Radio Corporation of America introdujo el modelo 501, que manejaba el lenguaje COBOL, para procesos administrativos y comerciales. Después salió al mercado la RCA 601.

    * Tercera generación
    Con los progresos de la electrónica y los avances de comunicación con las computadoras en la década de los 1960, surge la tercera generación de las computadoras. Se inaugura con la IBM 360 en abril de 1964.3
    Las características de esta generación fueron las siguientes:
    · Su fabricación electrónica esta basada en circuitos integrados.
    · Su manejo es por medio de los lenguajes de control de los sistemas operativos.
    La IBM produce la serie 360 con los modelos 20, 22, 30, 40, 50, 65, 67, 75, 85, 90, 195 que utilizaban técnicas especiales del procesador, unidades de cinta de nueve canales, paquetes de discos magnéticos y otras características que ahora son estándares (no todos los modelos usaban estas técnicas, sino que estaba dividido por aplicaciones). El sistema operativo de la serie 360, se llamó OS que contaba con varias configuraciones, incluía un conjunto de técnicas de manejo de memoria y del procesador que pronto se convirtieron en estándares. En 1964 CDC introdujo la serie 6000 con la computadora 6600 que se consideró durante algunos años como la más rápida.

    En la década de 1970, la IBM produce la serie 370 (modelos 115, 125, 135, 145, 158, 168). UNIVAC compite son los modelos 1108 y 1110, máquinas en gran escala; mientras que CDC produce su serie 7000 con el modelo 7600. Estas computadoras se caracterizan por ser muy potentes y veloces. A finales de esta década la IBM de su serie 370 produce los modelos 3031, 3033, 4341. Burroughs con su serie 6000 produce los modelos 6500 y 6700 de avanzado diseño, que se reemplazaron por su serie 7000. Honey - Well participa con su computadora DPS con varios modelos.

    A mediados de la década de 1970, aparecen en el mercado las computadoras de tamaño mediano, o minicomputadoras que no son tan costosas como las grandes (llamadas también como mainframes que significa también, gran sistema), pero disponen de gran capacidad de procesamiento. Algunas minicomputadoras fueron las siguientes: la PDP - 8 y la PDP - 11 de Digital Equipment Corporation, la VAX (Virtual Address eXtended) de la misma compañía, los modelos NOVA y ECLIPSE de Data General, la serie 3000 y 9000 de Hewlett - Packard con varios modelos el 36 y el 34, la Wang y Honey - Well -Bull, Siemens de origen alemán, la ICL fabricada en Inglaterra. En la Unión Soviética se utilizó la US (Sistema Unificado, Ryad) que ha pasado por varias generaciones.

    * Cuarta Generación
    Aquí aparecen los microprocesadores que es un gran adelanto de la microelectrónica, son circuitos integrados de alta densidad y con una velocidad impresionante. Las microcomputadoras con base en estos circuitos son extremadamente pequeñas y baratas, por lo que su uso se extiende al mercado industrial. Aquí nacen las computadoras personales que han adquirido proporciones enormes y que han influido en la sociedad en general sobre la llamada "revolución informática". En 1976 Steve Wozniak y Steve Jobs inventan la primera microcomputadora de uso masivo y más tarde forman la compañía conocida como la Apple que fue la segunda compañía más grande del mundo, antecedida tan solo por IBM; y esta por su parte es aún de las cinco compañías más grandes del mundo. En 1981 se vendieron 800 00 computadoras personales, al siguiente subió a 1 400 000. Entre 1984 y 1987 se vendieron alrededor de 60 millones de computadoras personales, por lo que no queda duda que su impacto y penetración han sido enormes.

    Con el surgimiento de las computadoras personales, el software y los sistemas que con ellas de manejan han tenido un considerable avance, porque han hecho más interactiva la comunicación con el usuario. Surgen otras aplicaciones como los procesadores de palabra, las hojas electrónicas de cálculo, paquetes gráficos, etc.

    También las industrias del Software de las computadoras personales crece con gran rapidez, Gary Kildall y William Gates se dedicaron durante años a la creación de sistemas operativos y métodos para lograr una utilización sencilla de las microcomputadoras (son los creadores de CP/M y de los productos de Microsoft). No todo son microcomputadoras, por su puesto, las minicomputadoras y los grandes sistemas continúan en desarrollo. De hecho las máquinas pequeñas rebasaban por mucho la capacidad de los grandes sistemas de 10 o 15 años antes, que requerían de instalaciones costosas y especiales, pero sería equivocado suponer que las grandes computadoras han desaparecido; por el contrario, su presencia era ya ineludible en prácticamente todas las esferas de control gubernamental, militar y de la gran industria. Las enormes computadoras de las series CDC, CRAY, Hitachi o IBM por ejemplo, eran capaces de atender a varios cientos de millones de operaciones por segundo.

    * Quinta Generación
    En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados. Japón lanzó en 1983 el llamado "programa de la quinta generación de computadoras", con los objetivos explícitos de producir máquinas con innovaciones reales en los criterios mencionados. Y en los Estados Unidos ya está en actividad un programa en desarrollo que persigue objetivos semejantes, que pueden resumirse de la siguiente manera: · Procesamiento en paralelo mediante arquitecturas y diseños especiales y circuitos de gran velocidad. · Manejo de lenguaje natural y sistemas de inteligencia artificial. El futuro previsible de la computación es muy interesante, y se puede esperar que esta ciencia siga siendo objeto de atención prioritaria de gobiernos y de la sociedad en conjunto.

  • MODELO DE VON NEUMANN
    Las computadoras digitales actuales se ajustan al modelo propuesto por el matemático John Von Neumann. De acuerdo con el, una característica importante de este modelo es que tanto los datos como los programas, se almacenan en la memoria antes de ser utilizados.
  • HISTORIA DE LA INFORMATICA
    * Máquina diferencial de Babbage
    Considerada por muchos como predecesora directa de los modernos dispositivos de cálculo, la máquina diferencial era capaz de calcular tablas matemáticas. Este corte transversal muestra una pequeña parte de la ingeniosa máquina diseñada por el matemático británico Charles Babbage en la década de 1820. Si hubiera contado con la financiación adecuada, la idea que Babbage tuvo más tarde de construir la máquina analítica, hubiese llegado a ser una auténtica computadora programable. Las circunstancias quisieron que ninguna de las máquinas pudieran construirse durante su vida, aunque esta posibilidad estaba dentro de la capacidad tecnológica de la época. En 1991, un equipo del Museo de las Ciencias de Londres consiguió construir una máquina diferencial Nº 2 totalmente funcional, siguiendo los dibujos y especificaciones de Babbage.

  • LA HISTORIA DE LA INFORMATICA
  • 1.-SOPORTE FISICO : HARDWARE
  • Los pioneros
    Al tiempo que se empiezan a construir máquinas para la gestión de la información contable, los hombres de ciencia quieren una máquina de tratamiento automático de datos científicos, un calculador científico. Desde el punto de vista de la ingeniería parece un objetivo más difícil, por la amplia gama de matices de la información a tratar en el mundo científico en relación al mundo administrativo y comercial; sin embargo, existe la gran ventaja de poder estandarizar con facilidad los problemas científicos en un lenguaje formal, como es el lenguaje matemático. La posibilidad de optar entre dos vías de actuación, o lo que es igual, de tomar y ejecutar una decisión se pudo implementar en los sistemas mecánicos primero mediante el concurso de la electricidad y, posteriormente, gracias al desarrollo de la tecnología, mediante la electrónica, pero en cualquier caso sobre la estructura tecnológica descansa una arquitectura lógica y matemática.

    Un relé clásico es el órgano elemental del razonamiento automatizado, en cuanto que puede adoptar dos posiciones: sí o no, verdadero o falso, cero o uno, según un convenio de transcripción de información previamente establecido; en el tema siguiente se verá cómo un número de relés suficientemente alto, convenientemente reunidos en serie (la salida de uno convertida en entrada del siguiente), o en paralelo (salidas paralelas y entradas paralelas), o en montaje híbrido (serie, paralelo) van a producir circuitos lógicos. Una vez que se logró simular físicamente un razonamiento lógico, todo el resto del desarrollo histórico del ordenador hasta hoy va a consistir en sustituir la tecnología primitiva de relés por tecnologías más avanzadas como válvulas de vacío, distintos tipos de transistores, circuitos integrados, etc.

    Conviene citar los trabajos de Shannon, entre una pléyade de científicos, matemáticos e ingenieros, como esenciales para lograr la conexión entre los aspectos físicos y los fundamentos lógicos que tienen lugar en un ordenador. En 1937 Howard Aiken, físico de la Universidad de Harvard, diseñó los planos para una máquina que obedecía órdenes consecutivas; dicha máquina fue construida por IBM y donada en 1944 a la Universidad de Harvard; se le llamó MARK I y fue la calculadora más potente con piezas electromecánicas.

    Ya se ha mencionado, en la introducción a este capítulo, que ENIAC fue el primer ordenador electrónico en el que el proceso de datos y su almacenamiento y el control de las operaciones se realizaba por medio de dispositivos electrónicos, los tubos de vacío, que hacen posible el salto del cálculo eléctrico al electrónico. En 1945, Von Neumann proponía diseñar y construir un ordenador que trabajase en sistema binario, capaz de almacenar en su interior los datos necesarios para la resolución del problema que se le plantease y con una memoria de mucha mayor capacidad que las conseguidas hasta ese momento.

    En 1949 se construía en la Universidad de Cambridge, en Inglaterra, el primer ordenador comercial destinado a la gestión; era un ordenador decimal que permitía utilizar caracteres alfabéticos, la entrada y salida de datos se realizaba por medio de tarjetas perforadas y utilizaba unidades de cinta magnética como memoria auxiliar.

  • Generalidades en la historia de los ordenadores
    La base fundamental de la evolución de los ordenadores digitales ha sido el desarrollo de los componentes que forman su memoria y unidades de cálculo. Los ordenadores digitales, que son normalmente de uso general, trabajan directamente con los datos numéricos, representándolos por medidas de variables discretas, como son los impulsos eléctricos, los dientes de una rueda dentada, etc. Los ordenadores analógicos, dedicados a problemas específicos, trabajan con los números, transformándolos mediante escalas en medidas de variables continuas, como son longitudes, corrientes, fuerzas magnéticas, etc. Para aprovechar la rapidez del ordenador analógico y la precisión del digital, según los cálculos requieran una u otra característica, se han construido ordenadores «híbridos» de los dos tipos anteriores. Con este criterio se habla de cinco generaciones, hasta el momento presente, en la historia del ordenador.

    -Primera generación: se la suele situar cronológicamente entre 1950 y 1960. Es la etapa de las empresas iniciales del mundo informático, Remington Road (UNIVAC) e IBM, que no venden sino que alquilan los ordenadores, tales son los elevados costes que comportan. Es la generación de las válvulas de vacío, con un soporte de programas muy rudimentarios escritos en código máquina.

    -Segunda generación: la invención del transistor por W. Shockley va a marcar la diferencia con la primera generación; a principios de 1960 salen al mercado los primeros ordenadores transistorizados. En esta generación, que cubre de 1960 a 1964, además de la sustitución de las válvulas de vacío por transistores, tiene lugar la ampliación de las memorias internas, la generalización del concepto de arquitectura modificable, se usan periféricos de gran masa de memoria como los tambores y discos magnéticos y se reduce el tamaño de los ordenadores. Aparecen los lenguajes ensambladores que traducen las instrucciones del código máquina, llegando a generar ya lenguajes de alto nivel como FORTRAN, COBOL y ALGOL.

    -Tercera generación: abarca aproximadamente la década 1964-1974; se progresa considerablemente en la reducción de tamaño y aumento de la velocidad de cálculo, mediante la implementación de diferentes tecnologías de integración de transistores y otros circuitos de estado sólido. Se avanza mucho en software, desarrollando más lenguajes de alto nivel (PL1, BASIC, RPG, APL) y sistemas operativos, se inicia la programación estructurada, se construyen potentes compiladores e intérpretes, se generaliza el uso en las empresas de paquetes de software, bibliotecas de programas y bases de datos; aparecen las técnicas de tiempo compartido y la multiprogramación. Se generalizan los periféricos en la arquitectura de los ordenadores, dotando a los sistemas informáticos de una gran modularidad; se hace uso del teleproceso, de discos flexibles y de lectoras ópticas. En este momento es cuando se estructura el mercado de ordenadores constituyéndose las compañías que llegan hasta nuestros días: IBM, Control Data, Nixdorf, Philips, ICL, Bull, Bourroughs (hoy Unisys), NCR, Siemens, Fujitsu, etc.

    -Cuarta generación: mediante las técnicas de integración a gran escala se produce la revolución del microprocesador; el tamaño de los ordenadores se reduce a una décima parte con respecto a los de la anterior generación, se alcanzan velocidades multiplicadas por factores de 10, 50 y hasta 100, y se llegan a grandes masas de memoria en reducidísimos tamaños; todo ello gracias a la tecnología LSI (gran escala de integración). En Silicon Valley, INTEL Corporation produce el primer microprocesador, es decir, un «chip», una pieza única de tamaño muy reducido que contiene miles de componentes electrónicos y que pueden realizar cualquier tarea lógica constituyéndose en la unidad central de proceso de un ordenador; inmediatamente después salen al mercado los microprocesadores Z-80, 6800 de Motorola y otros. Basándose en los microprocesadores, aparecieron los ordenadores de uso personal: en el número de enero de 1975 de la revista «Popular Electronics» aparecía la descripción de un ordenador que podía comprarse sin armar por 395 $ o que podía obtenerse armado por 650 $; se llamaba «Altair 8800» y estaba basado en el microprocesador 8080 fabricado por la empresa Intel.

    Su diseñador y constructor era Edward Roberts que fundó una pequeña compañía instalada en un garaje de una casa de Alburquerque, Nuevo México. Roberts se quedó sorprendido del éxito pues sólo esperaba vender unos cientos de Altair y recibió miles de peticiones que no podía atender. Otro éxito espectacular en la historia de los negocios en los EE.UU. es la empresa Apple.

    Poco después de la aparición de Altair dos amigos apasionados por la electrónica, Stephen Wozniak y Steven Jobs, de 25 y 20 años respectivamente, fundaban Apple Computers Company con el exiguo presupuesto que provenía de la venta de un coche y de una calculadora programable y de un pequeño crédito; fabricaron un ordenador del que vendieron unas 175 unidades a unos 500 $ cada una, a pesar de que era un aparato de muy difícil uso pues no tenía teclado ni terminales. En 1977 lanzaron el modelo Apple II que constituyó un rotundo éxito; a finales de 1983 alcanzaron un volumen de ventas de mil millones de dólares. En 1981, IBM lanzaba con mucho retraso y mucha cautela, un ordenador personal, el PC (Personal Computer), del cual ese año vendieron ya 35 000 unidades y en 1983, 800 000, situándose en el primer lugar de las ventas de microordenadores para empresa.

    En estos últimos años han aparecido continuamente nuevas máquinas y casi todas las grandes empresas de material electrónico, material de oficina o calculadoras, americanas, europeas o japonesas están tratando de hacerse un hueco en este floreciente pero difícil mercado (muchas empresas de Silicon Valley y otros parques tecnológicos han quebrado por la dura competencia en el sector de las tecnologías de vanguardia). Al mismo tiempo que se producía este gran desarrollo de los PC's, se profundizaba en la investigación de los grandes ordenadores y de los superordenadores, como el CRAY-1, diseñado por Seymour R. Cray, que tiene una memoria interna superior a los 8 megabytes y realiza 200 . 106 operaciones por segundo; el CRAY llega a manejar en ampliaciones de memoria hasta 20 gigabytes. Otros superordenadores son el FALCOM, japonés y el Numerical Aerodinamic Simulation Facility.

    -Quinta generación: hoy día existen múltiples proyectos de investigación y experiencias ya realizadas o en curso de realización en el terreno de la Inteligencia Artificial (IA) y de los Sistemas Expertos, temas que se tratarán en un capítulo posterior.

  • 2.- SOPORTE LOGICO : SISTEMA OPERATIVO.
    Un ordenador es, como ya hemos visto, una máquina que se dedica a «ejecutar programas». Pero hay muchas cosas que debemos decirle al ordenador, además de cuál es el programa que queremos ejecutar: con qué nombre se conoce el programa que nos interesa, cómo hay que organizar la memoria, donde están los ficheros que nuestro programa necesitará, dónde ha de guardar los que querremos grabar, etc. Todo esto y mucho más es necesario para hacer funcionar correctamente el ordenador. Evidentemente, no sería práctico que el operador tuviese que dar, de la manera que fuese, todas las instrucciones cada vez.

    De manera que hay que buscar algún procedimiento que haga de intermediario entre el operador y el hardware. Se podrían incluir todas estas funciones dentro de cada uno de los programas (de hecho, en los ordenadores más primitivos se incluían), pero es evidente que un conjunto tan amplio y tan complejo no puede estar dentro de cada programa sin que el resultado sea necesariamente poco ágil.

    Además, esto exigiría que las instrucciones de cada uno de los posibles programas fueran compatibles, y haría prácticamente imposible que el ordenador pudiera ejecutar más de un programa a la vez, como hoy es habitual. Por todo esto y muchas otras razones, pronto se vio que era mucho mejor que hubiera un programa (un conjunto de programas en realidad) que hiciera todas estas funciones comunes. Esto es precisamente lo que se llama sistema operativo. El sistema operativo de un ordenador es, pues, un conjunto de programas que tienen el objetivo básico de ampliar el potencial y la utilidad global del sistema, completando el hardware disponible con ciertas funciones nuevas o más potentes, como por ejemplo la carga y descarga automática de programas en función del espacio de memoria disponible, la gestión de los distintos periféricos, el control de la ejecución automática de los programas, con detección automática de determinados tipos de errores, el análisis de los recursos utilizados por los distintos programas, no sólo por motivos contables, sino también para facilitar su acceso bajo condiciones controladas, etc. El sistema operativo también mantiene la comunicación con el operador del sistema, tanto para tenerlo informado de los trabajos en curso como para pedir, si hace falta, su intervención.

  • 3.- SOPORTE LÓGICO: SOFTWARE DE APLICACIÓN
  • SOFTWARE INTEGRADO
  • Concepto de software de base
    En la práctica, los programas correspondientes a todos estos tipos de tarea han sido desarrollados separadamente (incluso por empresas diferentes). Así, la manera como cada programa guarda los datos en los ficheros puede ser, y de hecho es, muy diferente. Hasta el punto que, si tomamos dos aplicaciones al azar, es muy probable que no podamos hacer el traspaso de información de una a otra si, previamente, no hemos hecho algunas operaciones especiales. No obstante, la necesidad de realizar este traspaso ha cobrado importancia a medida que el uso en paralelo de los programas citados se ha ido demostrando imprescindible.

  • - Concepto de Paquete Integrado
    Este problema ha ido hallando solución por medio de la integración: la capacidad de las diversas aplicaciones de dialogar entre sí y compartir la información. Un método de integración consiste en la creación de estándares, que permitan acceder a ficheros grabados por otra aplicación (por ejemplo, los llamados ficheros ASCII); un paso adelante, en este sentido, lo ha dado la capacidad de ciertas aplicaciones de leer ficheros que tienen el formato específico de otra aplicación, mediante los oportunos programas de conversión. Muchas aplicaciones actuales ya han sido pensadas para ser utilizadas conjuntamente con otras relacionadas, y se diseñan de forma que los ficheros respectivos sean exportables entre ellas. Es el caso, por ejemplo, de Word, AmiPro con Lotus o Excel o DBase. Pero no podemos hablar de verdadera integración hasta la aparición de los llamados paquetes integrados, es decir, piezas de software que contienen varias de las aplicaciones antes mencionadas, las más frecuentes para un usuario medio: el procesador de textos, la hoja de cálculo, la base de datos y los gráficos, reunidos en un mismo entorno de trabajo.

  • - Paquetes Integrados: Ventajas
    El uso de los paquetes integrados tiene ventajas evidentes: no solamente resuelve de manera automática el traspaso de información entre sistemas diversos, sino que ofrece al usuario la tranquilidad de trabajar en un ambiente estable. Esto significa que el usuario no ha de aprender el significado y funciones de cada tecla, y los mandatos específicos de cada programa, ya que el entorno de trabajo y las teclas funcionales soportan siempre las mismas funciones. Existen en el mercado diversos paquetes de este tipo: por nombrar sólo los más conocidos, podemos citar: Open Acces, Symphony, Framework...

    ...Pág.2

    Volver